本页面提供了艾塔达克 API 的各种使用示例,帮助您快速上手。
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "你是一个有帮助的助手。"},
{"role": "user", "content": "请介绍一下人工智能的发展历史。"}
]
)
print(response.choices[0].message.content)
import { Atdak } from 'atdak';
const client = new Atdak({ apiKey: 'YOUR_API_KEY' });
const response = await client.chat.completions.create({
model: 'gpt-4o',
messages: [
{ role: 'system', content: '你是一个有帮助的助手。' },
{ role: 'user', content: '请介绍一下人工智能的发展历史。' }
]
});
console.log(response.choices[0].message.content);
curl -X POST https://api.atdak.com/v1/chat/completions \
-H "Authorization: Bearer YOUR_API_KEY" \
-H "Content-Type: application/json" \
-d '{
"model": "gpt-4o",
"messages": [
{"role": "system", "content": "你是一个有帮助的助手。"},
{"role": "user", "content": "请介绍一下人工智能的发展历史。"}
]
}'
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
stream = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": "写一首关于春天的诗"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)
import { Atdak } from 'atdak';
const client = new Atdak({ apiKey: 'YOUR_API_KEY' });
const stream = await client.chat.completions.create({
model: 'gpt-4o',
messages: [{ role: 'user', content: '写一首关于春天的诗' }],
stream: true
});
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content;
if (content) {
process.stdout.write(content);
}
}
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
# 维护对话历史
messages = [
{"role": "system", "content": "你是一个编程助手。"}
]
def chat(user_input):
messages.append({"role": "user", "content": user_input})
response = client.chat.completions.create(
model="gpt-4o",
messages=messages
)
assistant_message = response.choices[0].message.content
messages.append({"role": "assistant", "content": assistant_message})
return assistant_message
# 使用示例
print(chat("Python 的列表和元组有什么区别?"))
print(chat("那字典呢?"))
print(chat("给我一个综合使用这三种数据结构的例子"))
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
response = client.vision.recognize(
image="https://example.com/photo.jpg",
features=["labels", "objects", "text"]
)
print("识别到的标签:", response.labels)
print("检测到的物体:", response.objects)
print("识别到的文字:", response.text)
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
response = client.vision.generate(
prompt="一只可爱的机器猫,赛博朋克风格,霓虹灯背景",
size="1024x1024",
style="artistic"
)
print("生成的图像:", response.images[0].url)
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
with open("audio.mp3", "rb") as audio_file:
response = client.speech.transcribe(
file=audio_file,
language="zh-CN",
timestamps=True
)
print("识别结果:", response.text)
for segment in response.segments:
print(f"[{segment.start:.2f}s - {segment.end:.2f}s] {segment.text}")
from atdak import Atdak
client = Atdak(api_key="YOUR_API_KEY")
response = client.speech.synthesize(
text="欢迎使用艾塔达克 AI 服务平台",
voice="zh-CN-XiaoxiaoNeural",
format="mp3"
)
with open("output.mp3", "wb") as f:
f.write(response.content)
from atdak import Atdak
import numpy as np
client = Atdak(api_key="YOUR_API_KEY")
# 文档库
documents = [
"艾塔达克提供企业级 AI 云服务",
"我们的 API 简单易用,几行代码即可接入",
"支持 GPT-4、Claude 等主流大模型",
"边缘计算设备可以本地部署 AI 能力"
]
# 创建文档向量
doc_embeddings = client.embeddings.create(
model="text-embedding-v3",
input=documents
)
# 用户查询
query = "如何在本地运行 AI 模型?"
query_embedding = client.embeddings.create(
model="text-embedding-v3",
input=[query]
).data[0].embedding
# 计算相似度并排序
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
similarities = []
for i, doc_emb in enumerate(doc_embeddings.data):
sim = cosine_similarity(query_embedding, doc_emb.embedding)
similarities.append((i, sim))
# 返回最相关的文档
similarities.sort(key=lambda x: x[1], reverse=True)
print(f"最相关的文档: {documents[similarities[0][0]]}")
from atdak import Atdak
from flask import Flask, request, jsonify
app = Flask(__name__)
client = Atdak(api_key="YOUR_API_KEY")
SYSTEM_PROMPT = """你是艾塔达克的智能客服助手。你需要:
1. 友好、专业地回答用户问题
2. 提供关于产品和服务的准确信息
3. 遇到无法回答的问题,建议用户联系人工客服
"""
@app.route("/chat", methods=["POST"])
def chat():
user_message = request.json.get("message")
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_message}
],
temperature=0.7
)
return jsonify({
"reply": response.choices[0].message.content
})
if __name__ == "__main__":
app.run(port=5000)